Speech Recognition for Cleft Lip and Palate Voice and Standard Voice for Consonant Words /B/

Akhmad Anggoro, Samiadji Herdjunanto, Risanuri Hidayat

Abstract

Advances in technology make speech recognition improve. But does speech recognition recognize the sounds of cleft lip and palate? this research uses the voice of cleft lip and palate to normal voice. With the letter / b / which is the letter for lip articulation. Words used include Clothes, Ash and Moist. The extraction method uses Mel Frequency Cepstral Coefficients (MFCC), the classification uses K-Nearest Neighbor (KNN) with K-Fold Cross-Validation as a test. The results show the accuracy above 70%. 75% in the word "Baju". 75% in the word "Abu". 83% in the word "Lembab".

Keywords

MFCC; KNN; K-Fold Cross-Validaton; Cleft Lip Palate

References

Farooq, O., & Datta, S. (2003). Phoneme recognition using wavelet based features. Information Sciences, 150(1-2), 5-15.

Hidayat, R., & Ikawijaya, W. (2015, November). Wavelet based feature extraction for the vowel sound. In 2015 International Conference on Information Technology Systems and Innovation (ICITSI) (pp. 1-4). IEEE.

Sardjono, Terapi Wicara. jakarta: Departemen Pendidikan Nasional, 2005.

Winursito, A., Hidayat, R., & Bejo, A. (2018, March). Improvement of MFCC feature extraction accuracy using PCA in Indonesian speech recognition. In 2018 International Conference on Information and Communications Technology (ICOIACT) (pp. 379-383). IEEE.

Supandi, A. (2014). ANGKA KEJADIAN SUMBING BIBIR DI RSUP Prof. Dr. RD KANDOU MANADO PERIODE 2011-2013. e-CliniC, 2(2).

Yeni, F. (2008). Interpretasi Lafal Fonem Penderita Bibir Sumbing.

Hidayat, S., Hidayat, R., & Adji, T. B. (2015). Sistem pengenal tutur bahasa indonesia berbasis suku kata menggunakan mfcc, wavelet dan hmm. In Conference on Information Technology and Electrical Engineering (CITEE) (pp. 246-251).

A. Setiawan, A. Hidayatno, R. R. Isnanto, J. T. Elektro, F. Teknik, and U. Diponegoro, “Aplikasi Pengenalan Ucapan dengan Ekstraksi Mel-Frequency Cepstrum Coefficients (MFCC) Melalui Jaringan Syaraf Tiruan (JST) Learning Vector Quantization (LVQ) untuk Mengoperasikan Kursor Komputer,” vol. 13, no. 3, pp. 82–86, 2011.

Susanti, E., & Al Sasongko, S. M. (2017). KLASIFIKASI SUARA BERDASARKAN USIA MENGGUNAKAN MEL FREQUENCY CEPSTRAL COEFFICIENT (MFCC) DAN K-NEAREST NEIGHBOUR (K-NN). DIELEKTRIKA, 4(2), 120-126.

Orozco-Arroyave, J. R., Vargas-Bonilla, J. F., Vásquez-Correa, J. C., Castellanos-Domínguez, C. G., & Nöth, E. (2016). Automatic detection of hypernasal speech of children with cleft lip and palate from spanish vowels and words using classical measures and nonlinear analysis. Revista Facultad de Ingeniería Universidad de Antioquia, (80), 109-123.

Nieto, R. G., Marín-Hurtado, J. I., Capacho-Valbuena, L. M., Suarez, A. A., & Bolaños, E. A. B. (2014, September). Pattern recognition of hypernasality in voice of patients with Cleft and Lip Palate. In 2014 XIX Symposium on Image, Signal Processing and Artificial Vision (pp. 1-5). IEEE.

Setiawan, A., Hidayatno, A., & Isnanto, R. R. (2012). Aplikasi Pengenalan Ucapan dengan Ekstraksi Mel-Frequency Cepstrum Coefficients (MFCC) Melalui Jaringan Syaraf Tiruan (JST) Learning Vector Quantization (LVQ) untuk Mengoperasikan Kursor Komputer (Doctoral dissertation, Diponegoro University).

B. Darmawan and S. Ariessaputra, “Sistem Pengenalan Dan Verifikasi Pembicara HMM,” Semnastikom 2016, pp. 1–6, 2016

Kusumawati, R. (2016). Metode Linear Predictive Coding (LPC) Pada klasifikasi Hidden Markov Model (HMM) Untuk Kata Arabic pada penutur Indonesia. MATICS, 8(1), 32-35.

Satrya, R., Hidayat, I. B., & Budiman, G. (2010). Sistem Identifikasi Suara Pria dan Suara Wanita Berdasarkan Usia Menggunakan Mel Frequency Cepstral Coefficient dan K-Mens Clustering.

He, L., Zhang, J., Liu, Q., Yin, H., Lech, M., & Huang, Y. (2015). Automatic evaluation of hypernasality based on a cleft palate speech database. Journal of medical systems, 39(5), 61.

Saini, I., Singh, D., & Khosla, A. (2013). QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases. Journal of advanced research, 4(4), 331-344.

Diker, A., Cömert, Z., Avci, E., & Velappan, S. (2018, May). Intelligent system based on Genetic Algorithm and support vector machine for detection of myocardial infarction from ECG signals. In 2018 26th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.

Article Metrics

Abstract view : 15 times

Refbacks

  • There are currently no refbacks.