Transliteration Lampung Script with Method Intensity of Character

Nanang Himawan Fauzi, Evannoah Rolimarch Pratama, Reynaldi Setiawan, Yakobus Aris Arvanto, Yoga Dwi Prasetyo

Abstract


The goal of writing this scientific work is to explain one of the ways to read Lampung Script using pattern recognition method.  There are three main steps in lampungnese image transliteration, i.e. step to preprocessing, feature extracting, and classifying. Each character is made into a binary image that is as thin as possible and the same size. The feature of every character is extracted using intensity of character. For the classification of this pattern recognition is using 1-Nearest Neighbor. By using 120 data of Lampung’s script in 6 different font, we got the accuracy of success 95%. From this accuracy we consider that the experiment is a success.


Keywords


Lampung script, pattern recognition, K-Nearest Neighbor, binerization, Rosenfeld

References


Widiarti, A.R. (2011). Comparing Hilditch, Rosenfeld, Zhang-Suen, and Nagendraprasad-Wang-Gupta Thinning Algorithms for Javanese Character Image. In International Conf. on Pattern Recognition and Computer Vision (ICPRCV). Amsterdam Netherlands(pp. 938–942).

Surinta, O. (2010). Overview of Handwritten Thai Character Recognition. online: http://www.ai.rug.nl/~mrolarik/APSMeeting/09-072010%20Overview%20of%20Hand-written%20 Diakses

Widiarti, A.R., dan Harjoko, A. (2006). Pengenalan Citra Dokumen Sastra Jawa (Studi Kasus Pada Buku Sastra Jawa: Menak Sorangan I dan Panji Sekar). Sains Dan Sibernetika, 19(3, pp. 269–282)

Widiarti, A. R., Harjoko, A., Marsono, dan Hartati, S. (2017). The Model and Implementation of Javanese Script Image Transliteration. In International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT) Denpasar(pp. 51-57).

Widiarti, A.R. (2015). Pengenalan Aksara. Studi Kasus Pengenalan Aksara Jawa. online: http://exelsa.usd.ac.id/modules.php?mod=2e66d75ab544cd2d72605aa84a4100-e4&pid=5314 Diakses 2 Maret 2018.

Cha, S-H. (2007). Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. International Journal Of Mathematical Models And Methods In Applied Sciences, 4(1, pp:300-307).

Kusumaningrum, A. (2017). Pengaruh Jumlah file Training Terhadap Akurasi Pendeteksian Obyek Pada Metode Viola Jones. In Seminar Nasional Teknologi Informasi dan Kedirgantaraan (SENATIK) 2017, 3(pp:1).

Wintolo H., dan Widiastuti, T.W. (2015). Pemanfaatan Image To Speech Berbasis Android Untuk Pengenalan Warna Bagi Anak Bawah Tiga Tahun (Batita). In Jurnal Ilmiah Bidang Teknologi Angkasa, 7(pp:2).

Rosandy, T. (2016). Perbandingan Metode Naive Bayes Classifier Dengan Metode Decision Tree (C4.5) untuk Menganalisa Kelancaran Pembiayaan ,2(pp;57-58).

J.L. Danhauer and L.E. Lucks. (1987). The Confusion Matrix: A New Model. In Human Communication Canada/Communication Humaine Canada, Vol. 11, No. 4, 1987(pp;2).




DOI: http://dx.doi.org/10.28989/senatik.v4i0.279

Article Metrics

Abstract view : 19 times

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Conference SENATIK P-ISSN :2337-3881 and  E-ISSN : 2528-1666