Simulasi Numerik Persamaan Aliran Fluida Tak Mampat Menggunakan Metode Beda Hingga

Endang Mawarsih

Abstract


Simulasi numeric aliran fluida tak mampat dilakukan menggunakan metode beda hingga. Persamaan atur yang digunakan terdiri dari persamaan kontinyuitas dan persamaan momentum untuk aliran tak tunak dan fluida tak mampat. Persamaan atur didiskretisasi menggunakan metode beda hingga implicit pada grid staggered. Diskritisasi turunan waktu didekati dengan metode Euler dan turunan ruang didekati dengan metode beda hinggga. Prosedur penyelesaian persamaan atur menggunakan skema pressure correction. Perbandingan hasil perhitungan nilai kecepatan u pada x=0.5 dengan hasil perhitungan dari literature menunjukkan kesesuaian yang baik.Metode beda hingga pada grid staggered mampu menyelesaikan persoalan aliran fluida tak mampat sampai dengan bilangan Rey= 104.

Kata kunci: metode beda hingga, grid staggered, pressure correction 


References


Ertruk.E, Corke. T. C., Gokqol. C., 2005, Numerical Solutions of 2-D Steady Incomprssible Driven Cavity Flow at High Reynolds Numbers, Int. J. for Numerical Methods in Fluids.

Ghia. U, Shin. C.T., 1982, High-Re Solutions For Incomprssible Flow Using TheNavier-Stokes Equations and Method,Journal Of Computational Physics, 48 (1982), p387-411.

Marchi CH, Suero R, Araki L. K., 2009, The Lid-Driven Square Cavity Flow:Numerical Solution with a 1024 x 1024 Grid, J. Journal of The Braz. Soc.of Mech. Sci. & Eng., Volume 31.

Tamer AbdelMigid..A., Khalid. M.S., 2017, Revisiting the Lid-Driven Caviity Flow Problem:Review and New Steady State Benchmarking Results Using GPU Accelerated Code, Alexandria Eng. J., 56, p123-125.

Lemee. T, Kaperski. G, 2015, Multiple Stable Solutions in the 2D Symmetrical two-sided Square Lid-Driven Cavity, Computer and Fluids, 119, p204-212.

Li Zhenquan, Wood R., 2015, Journal Analysis of an Adaptive Mesh Refinerment Method Using Benchmarks of 2D Steady Incompressible Lid-Driven Cavity and Coarser Meshes, J. Of Computational and Applied Mathematics, 275, p262-271.

Kao Po-Hao, Yang. R, 2007, A Segregated-implicit Scheme for Solving the Incompressible Navier-Stokes Equations, Computer and Fluid, 36, p1159-1161ving

Joel Chorin. A, 1997, A Numerical Method for Solving Incompressible Viscous Flow Problems, J. Of Computational Phisics, 135, p118-125.

Peskin, C.S., 1985, A Random-Walk Interpretation of the Incompressible Navier-Stokes Equations. Pure and Applied Mathematics, vol. XXXVIII (1985), p. 845-852.

Richtmyer, R.D., Morton, K.W., Difference Methods for Initial Value Problems (Interscience, New York, 1967).

Tryggvason, G., 2012, A Front-tracking/Finite-Volume Navier-Stokes Solver for Direct Numerical Simulations of Multiphase Flows.

Tuakia, F., 2008. Dasar-dasar CFD Menggunakan Fluent. Informatika Bandung, Bandung.




DOI: http://dx.doi.org/10.28989/senatik.v3i0.116

Article Metrics

Abstract view : 105 times
PDF (Bahasa Indonesia) - 75 times

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Conference SENATIK P-ISSN :2337-3881 and  E-ISSN : 2528-1666